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NOMENCLATURE 

constant defined by equations (8a); 
constant defined by equations (21) and (22); 
specific heat; 
constant defined by equation (4); 
constant defined by equation (4) ; 
prescribed heat flux at x = 0; 
function defined by equations (16); 
heat-transfer coefficient at x = 0; 
position of melting interface; 
thermal conductivity; 

k, kJk ratio of solid to liquid thermal conductivity; 
L, latent heat of fusion ; 
R, 13 J(0, - O,), dimensionless subcooling ratio ; 
St, 0, - O,, Stefan number; 
r, time coordinate; 
‘0, time when melting begins; 
7-3 temperature; 
Ti, initial temperature; 
T In, melting temperature; 
T s1 ambient temperature; 
X, spatial coordinate. 

Greek symbols 

thermal diffusivity ; 
as/al ratio of solid to liquid thermal diffusivity ; 
hH/k, dimensionless melting thickness; 
penetration depth into the solid region; 
C,( T - T,)/L, dimensionless temperature ; 
dimensionless melting temperature; 
t?(O), dimensionless wall temperature; 
dimensionless ambient temperature; 
ha/k,, dimensionless penetration depth; 
density ; 
FH/pLu,, dimensionless melting thickness; 
dimensionless time defined by equation (12); 
FG/pLa,, dimensionless penetration depth; 
melting constant defined by equations (7) and (8); 
dimensionless time defined by equation (16). 

I liquid ; 
s. solid. 

INTRODUCTION 

MANY practical heat-transfer problems involve a change of 
phase of the material due to either melting or freezing. Most of 
the existing work [l-S], however, deals only with situations 
in which the medium is initially at its melting temperature. As 
noted in a recent publication [S], this situation is not only 
unrealistic for most practical applications, but is also difficult 
to attain even under controlled laboratory conditions. 

One of the most powerful solution techniques for the phase 
change problem is the heat-balance integral method [3-41. In 

this method, the heat-conduction equation is approximated 
by an overall energy balance at regions of interest in both 
phases. With an assumed temperature profile and in con- 
junction with the energy-balance condition at the phase front, 
a system of differential equations are obtained. Approximate 
solutions for the interface location and other important 
physical parameters are then generated. For problems with 
zero subcooling, results [3] show that this ‘pure integral 
method is quite effective in generating reliable approximate 
solutions. But for problems with initial subcooling, the 
method yields a system of non-linear differential equations 
[4]. Solution to these equations can be just as complicated as 
a direct numerical solutions for the exact result. The heat- 
balance integral method, therefore, has yet been considered as 
an effective approximation method for melting problems with 
initial subcooling. 

The objective of this work is to show that if the energy- 
balance condition at the phase front is expressed by a 
‘collocation method’, the integral technique can be applied 
effectively to melting problems with initial subcooling. De- 
veloped originally by Goodman [3] to overcome the non- 
linearity encountered in problems with zero-subcooling, the 
‘collocation method’ replaces the traditional energy-balance 
condition at the phase front by two relations between the 
medium’s temperature profiles at both phases and their 
derivatives. Unlike the ‘pure integral’ technique, approximate 
solutions for the medium’s temperature and the phase front 
location for problems with initial subcooling can be obtained 
either in closed form or as a numerical quadrature. To 
demonstrate the utility of the present method, detailed 
solutions for the melting of a one-dimensional semi-infinite 
subcooled plane subjected to three common types of boun- 
dary conditions are presented. The accuracy of these so- 
lutions is demonstrated by comparison with the available 
exact solution and numerical results. Based on these approx- 
imate solutions, the general effect of subcooling on the 
physics of melting is discussed. 

MATHEMATICAL FORMULATION 

Consider the idealized problem of the melting of a semi- 
infinite solid initially at a uniform temperature T, ~Ut+xn its 
melting temperature T,,,, the governing equations and their 
associated boundary conditions can be obtained from any 
standard heat-conduction text [l]. For an integral analysis, 
an overall energy balance for the whole slab can be written as 
follows : 

g PC1 1 J T,dx+pLH+c, 
J 

T, dx 
0 H 

-pc,(H+6)T,]= -k,g10 (1) 

where T is the temperature, H the location of the melting 
interface, a the thermal diffusivity, k the thermal conductivity, 
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p the density which is assumed to remain constant during the 
melt, L the latent heat of melting, c the specific heat, 6 the 
penetration depth into the solid region and the subscripts s 
and I denote the solid and liquid regions respectively. In the 
‘collocation method’, the interface energy-balance condition 
are written as 

where CL, and a, stand for the thermal diffusivity at the solid 
and liquid regions. 

Except for the case with negligible heat capacity [6], it can 
be shown that the simplest approximate expressions for 7, 
and T, are second degree polynomials. Consistent with the 
usual set of boundary conditions [ 11, these expressions are 

T, = T,,, + D,(x - H) + D,(x - H)*, (4) 

Together with a prescribed boundary conditions at I = 0. 
equations (l)-(3) are sufficient for the solution for D,, D,, H 
and 6 appearing in equations (4) and (5). 

APPROXIMATE SOLUTIONS 

Melting of solid with fixed boundary temperature 

This is the famous Neumann problem. Introducing the 
following dimensionless temperature 

* = :cpr! (6) 

Equations (l)-(15) can be solved to yield the following 
expression for the melting thickness H. 

H(r) = 2$(a,t)” (7) 

where 

, (8) 

with 

B =kR+a”’ 
1 II 

2.97 

where B, is a constant given by 

EL = 2k,,fI, + I,! 

and T is a dimensionless time defined by 

In the above expression, r0 is the trme when melting begins. 
Physically, the temperatureetime history on the boundary is 
of practical interest and the result is 

‘The exact solution for the meltmg problem with prescribed 
heat flux boundary condition is not yet available. The 
accuracy of equations (16) and (13) must, therefore, be 
established by comparison with a numerical solution. Utiliz- 
ing a recently-developed variable-time-step (VTS) numerical 
technique [7], accurate numerical results for 0 and O,, can be 
readily generated. Results show that the accuracy of equa- 
tions(lO)and (13)areexcellent. It isimportant tonote that as 
in the case with no initial subcooling [2], the present heat- 
balance integral analysis is accurate only when F(I) ts 
monotonically increasing or constant. If F(t) is a pulse-type 
function, equation (1) generally is not accurate and aher- 
native methods must be applied. 

Meltiny ofsolid with come&w heur flzrv ut the bowldart 
For I > t, the appropriate dimensionless temperature. 

penetration depth and melting thickness for this problem are 

Equation (1) is reduced to 

where 

and R = 6,/(0, - 0,) and St = 0, - G,,, stand for the 
dimensionless subcooling ratio and Stefan number respec- 
tively. The accuracy of equation (7) can be readily established 
by direct comparison with the exact solution available in 
references [l] and [S]. In all cases, the maximum error is less 
than 10%. 

Melting of solid with prescribed heat .fiux at the boundary 
Introducing the following expressions for the dimension- 

less penetration depth and melting thickness 

+!L, FH (Tz-- 
PL% 

19) 

where F is the constant heat flux applied at the boundary x = 

While equation (15) cannot be Integrated analytically rn 
closed form, /I can be evaluated by a simple numerical 
integration. Once b is obtained, the wall temperature is ptven 

by 

a,, = ~ + (0, - e,,[zg + SD’ + /I’] 

(1 + B)[2i(l + fl) + a,,(2B + /?)I (17’ 

Comparison between the value of/j obtamed from equatton 
(15) and the numerical result generated by the VTS method 
for various values of em and 0, - 0, are conducted. The 
agreement is excellent for all cases. Equation (17) is expected 
to have the same degree of accuracy. 

RESULTS AND DlSCUSSlOh 

As expected, results show that initial subcooling has twru 
major effects on the melting process. For cases with pre- 
scribed heat flux and convective heat-transfer boundary 
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Table 1. Eflects of a, and k,, on the melting constant $ with 
St = 1.0 and R = 1.0 

ad 
k rl 1.0 2.0 3.0 4.0 

1.0 0.3943 0.4229 0.4349 0.4417 
2.0 0.2975 0.3437 0.3657 0.3789 
3.0 0.2309 0.2818 0.3086 0.3256 
4.0 0.1863 0.2356 0.2637 0.2925 

_~ 

1.0 

St 

FIG. 1. Region of applicability of the no-subcooling assump- 
tion for the melting problem with constant wall tempera- 
ture. The shaded region represents values of R and St such 

that 1 - $(R, St)/$(O, St) I 0.1. (aal = k,, = 1.0). 

0.5 

0.3 

hl 

0.1 

0 
0 20 40 80 KXJ 

T 

FIG. 2. Region of appiieability of tbe no-subcooling assump 
tion for the melting problem with a prescribed heat flux at 
the wail. The shaded region represents values of& and T such 

that 1 - a(@,, r)/u(O, T) < 0.1. (a,, = k,, = 1.0). 

conditions, it delays the start of the melting until the 
temperature of the boundary reaches the melting tempera- 
ture. In all three cases, initial subcooling slows down the rate 
of propagation of the melting interface. 

Until recently [S, 71, most analysis of phase-change prob 
lems considered only cases with no initial subcooling. 
Mathematically, this represents a substantial simplification. 
It was generally felt that by the time the melting temperature 
is reached on the boundary, the solid would have been heated 
to such an extent that it will be virtually at the melting 
temperature at the neighborhood of the melting interface. 
Respite its immense popularity, it is interesting to note that 
this assumption has never been justified either analytically or 
numerically. Only a limited mathematical discussion of this 
point, for exampte, is given by Evans et al. [S]. The present 
results provide a good basis for a quantitative evaluation of 
this important assumption. 

For the case with constant wall tem~rature, it can be 
shown that at a given value of St, the deviation of the melting 
constant rl, with R # 0 from that with R = 0 can be quite 
substantial. Based on equation (18) and assuming asl = k,, = 
1.0, the values of St and R such that the no-subcooling result 
(R = 0) constitutes an adequate approximation (less than 
10% relative error) for the actual subcooling result (R # 0) 
are tabulated and presented as the shaded region in Fig. I. 
The relatively small area ofthe shaded region indicates that in 
most cases the effect of subcooling is quite significant. 

For the case with a prescribed heat flux at the boundary, 
subcooling also has a noticeable effect on the melting process. 

During the early stage of melting (T -+ 0), equation (10) shows 
that except for small S,, the non-subcooling result will not be 
an adequate approximation for the subcooling cases. At the 
later stage of melting, on the other hand, the non-suckling 
assumption is quite acceptable. Figure 2 illustrates this 
conclusion more quantitatively for cases with ast = kst = 1 .O. 
Based on equation (lo), the values of 0, and T such that the 
no-subcooling result (0, = 0) differ from the subcooling 
result (6, # 0) by less than loo/, relative error are tabulated 
and presented as the shaded region in that figure. Since r is a 
dimensionless time inversely proportional to the heating rate 
F, Fig. 2 agrees essentially with the traditional assumption 
that for a slow heating rate (and therefore a larger), the effect 
of initial subcooling is unimportant. It is interesting to note, 
however, that for all cases with moderate or large values of 
subcooling (@, > 0.0833) and independent of the heating rate 
F, the non-&cooling result always differs significantly from 
the corresponding subcooling cases during the initial stage of 
melting. 

For the melting problem with a convective heat-flux 
boundary condition, the effect of initial subcooling is even 
more significant than the previous two cases. At the early 
stage of melting, the relative difference between the non- 
subcooling solution and the subcooling result is quite large 
except for very small degree of initial subcooling (8, --+ 0). At 
the later stage of melting (o - co), unlike the case with the 
prescribed heat-flux boundary condition in which the non- 
subcooling result is always accurate in the limit of large 
melting time, there are values of 8, - 0, and 6, such that at 
all times, the non-su~oo~ng solution is not an accurate 
approximation for the corresponding subcooling case. 

Finally, results of the present analysis also show the 
important effect of thermal property ratios a,‘ and k,, on the 
melting process. Without initial subcooling, a=i and $ have 
no effect on the melting result since the analysis does not 
involve the solid region. With initial subcooling, however, the 
effect of ad and k,, can be quite substantial. Table 1 illustrates 
some typical results on the influence of a,, and k,, on the 
melting thickness. Assuming R = 1.0 and St = 1.0, the 
melting constant 3, based on equation (18) is tabulated for 
different values of ~1,~ and ksi. Generally, the melting rate 
increases with increasing a,, and decreasing k,(. Physically, it 
is important to note that large values of a,, and &,, are not 
unusual among common materials. For water and ice, for 
example, fc.r and k,, are 7.99 and 3.68 resistively. 
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SELF-PRESERVATION OF SLIGHTLY HEATED 
SMALL PERTURBATION JETS AND WAKES 

IN -4 PRESSURE GRADIENT 
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c,, c,, c,, Cd. c,, constants defined in text; 
self-preserving functions defined by equa- 
tions (10) and (31); 
self-preserving functions defined by equa- 
tions (2) and (22); 
self-preserving functions defined by equa- 
tions (3) and (23); 
self-preserving functions defined by equa- 
tions (10) and (31); 
self-preserving functions defined by equa- 
tions (10) and (31); 
scaling lengths for the velocity and the tem- 
perature, respectively; 
exponent for the x variation of U,, equation 

(15); 
exponent for the x variation of a,,, equation 

(16); 
exponent for the x variation of 1,, equation 
(16) ; also kinematic fluctuating pressure, 
equation (9) ; 
u2 + 2 + w2 ; 
mean temperature ; 
mean velocities in the x and 4’ directions; 
free stream velocity ; 
fluctuating velocities in the x, r and z 
directions ; 
velocity scale ; 
axial distance ; 
distance normal to axis of symmetry. 

a, 
al,P,7, 
i:, I:,,, 

1, 
4, 
e 0, 
v, 

Others 

thermal diffusivity of fluid ; 
exponential indices defined in text; 
mean dissipation of turbulent energy, equa- 
tion (9) and of temperature, equation (31); 
?‘!I, ; 
4’/1,; 
temperature scale; 
kinematic viscosity of fluid. 

prime, denotes derivative with respect to the argu- 
ment of the function ; 

_.~____~_ 
*Permanent address : Department of Mechanical 

Engineering, University of Sydney, New South Wales 2006, 
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2308, Australia 

overbar, denotes time average. 

GARTSHORE and Newman [l] have shown that the approx- 
imately self-preserving isothermal jet or wake in zero 
pressure gradient is only a particular example of a class of 
approximately self-preserving flows in pressure gradients. 
Necessary conditions for self-preservation in both two- 
dimensional and axisymmetric flows were obtained from the 
mean flow momentum equation and the turbulent energy 
equation. Townsend [2] showed that if small amounts of heat 
are present in a turbulent flow that is developing in self- 
preserving fashion, the temperature distribution may also be 
of self-preserving form. In particular, when the velocity 
increment in the case of a jet or the deficit in the case of a wake 
is proportional to the velocity U, of the streaming flow, the 
development is possible only if the temperature scale B0 is 
proportional to the velocity increment (or deficit). In this 
note, it is shown that the temperature length scale is 
proportional to the velocity length scale 1, for the case of a 
slightly heated two-dimensional (or axisymmetric) jet and 
wake in which the velocity increment or deficit is small 
compared with U,. Also, the streamwise variation of B0 is 
obtained and the condition for exponential variation of 0, 
will be made precise. With U, _ .xm, the bounds on m for a 
two-dimensional flow are given [1] by - l/3 im<O. In 
particular, when m = - l/3, the length scale I, varies linearly. 
the velocity scale U 1 varies as Y ’ I3 and B0 varies as x 2 3. In 
a zero pressure gradient (e.g. Newman [3]), I, r; ,~i’~, 
a0 r Y I’*. It is shown here that, for the latter case, B0 is 
proportional to ua. 

The mean momentum equation for a two-dimensional flow 
can be approximated to 

(li 

Using Townsend’s [2] notation, the self-preservation forms 
for the velocity field are assumed to be given by 

U = U, + auf‘(s), (-3) 

UD = u&). (3) 

The normal velocity V is obtained by Integrating the 
continuity equation (assuming constant density), viz. 

For small perturbation jets and wakes, i.e. when /u. 1 cc U,, 
(1) may be approximated, after substitution of (2). (3) and (4) 
and neglecting terms of order O((u,/U,)‘), to 


